Particle swarm optimization feedforward neural network for modeling runoff

نویسنده

  • M. Shamsuddin
چکیده

The rainfall-runoff relationship is one of the most complex hydrological phenomena. In recent years, hydrologists have successfully applied backpropagation neural network as a tool to model various nonlinear hydrological processes because of its ability to generalize patterns in imprecise or noisy and ambiguous input and output data sets. However, the backpropagation neural network convergence rate is relatively slow and solutions can be trapped at local minima. Hence, in this study, a new evolutionary algorithm, namely, particle swarm optimization is proposed to train the feedforward neural network. This particle swarm optimization feedforward neural network is applied to model the daily rainfall-runoff relationship in Sungai Bedup Basin, Sarawak, Malaysia. The model performance is measured using the coefficient of correlation and the Nash-Sutcliffe coefficient. The input data to the model are current rainfall, antecedent rainfall and antecedent runoff, while the output is current runoff. Particle swarm optimization feedforward neural network simulated the current runoff accurately with R = 0.872 and E2 = 0.775 for the training data set and R = 0.900 and E2 = 0.807 for testing data set. Thus, it can be concluded that the particle swarm optimization feedforward neural network method can be successfully used to model the rainfall-runoff relationship in Bedup Basin and it could be to be applied to other basins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling

Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...

متن کامل

Modeling heat transfer of non-Newtonian nanofluids using hybrid ANN-Metaheuristic optimization algorithm

An optimal artificial neural network (ANN) has been developed to predict the Nusselt number of non-Newtonian nanofluids. The resulting ANN is a multi-layer perceptron with two hidden layers consisting of six and nine neurons, respectively. The tangent sigmoid transfer function is the best for both hidden layers and the linear transfer function is the best transfer function for the output layer....

متن کامل

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

Optimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network

This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...

متن کامل

Rainfall-Runoff Correlation with Particle Swarm Optimization Algorithm

A reliable correlation between rainfall-runoff enables the local authority to gain more amble time for formulation of appropriate decision making, issuance of an advanced flood forewarning, and execution of earlier evacuation measures. Since a variety of existing methods such as rainfall-runoff modeling or statistical techniques involve exogenous input and different assumptions, artificial neur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009